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The solution of the integrodifferential energy equation for an absorbing—emitting medium involves con-
siderable mathematical difficulties. In view of this approximate differential equations are widely employed
when computing radiative heat exchange; they contain transfer coefficients averaged over various directions
[1~8]. In analyzing the range of applications of this method, the exact values of the transfer coefficients and
the effect of their deviation from their mean values on the magnitude of the radiative flux must be known.

To evaluate one-dimensional radiative fluxes the following differential equation was obtained in [9] to-
gether with its boundary conditions:
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where q is the dimensionless radiative flux, g=Q/ aTé (Q is the resultant radiative flux; T, is the character-
istic temperature); n is the dimensionless coordinate, n =y/I; T, is the optical thickness of layer of thickness
I; B is the scattering coefficient; n is the refraction coefficient; E is the dimensionless hemispheric radiation
density of an absolutely black body; € is the degree of plate blackness; r is the reflection coefficient; I{n, s)
is radiation intensity at the point 7 in the s direction; y is. the axially symmetrical scattering indicatrix;and o
is the Stefan—Boltzmann constant.

Equations (1)-(3) are exact and take into account the anisotropy as well as the scatter of radiation. How-
ever, their solution presents difficulties, since the values of the transfer coefficients A, my, m, are notknown
in advance. By setting A=1/3, m;=m, =2, one obtains equations of differential approximation which can easily
be solved. It can be shown that the above-adopted values of the coefficients correspond either to spherical
isotropy of the radiation field or to isotropy of the upper or lower hemisphere. For optically dense media
with moderate temperature gradients the radiation anisotropy is not high [10] and the values of the transfer
coefficients remain fairly close to their mean values., A reduction in optimal thickness strengthens the radi-
ation anisotropy and the coefficients A, m;, m, start to depend on the relative intensity distribution of radiation
in different directions, In this article a numerical investigation of this dependence is carried out as well as a
comparison of the magnitude of radiative fluxes obtained from the exact solution by using the equations of dif-
ferential approximation.

The investigation was carried out on the physical model shown in Fig. 1. A flat layer of radiative ab-
sorbing medium optically bounded by a nontransparent plate 1 and a transparent plate 2 is irradiated from
above by a diffusion-radiation source of temperature @, ® =T/T, is the dimensionless temperature). The
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Fig. 1
TABLE 1
o=1,3 Q=1,6
To T )
A I q, q Ty me A q1 q I my l iy
0 1,172 1,483 2,836 2,909
0,0051 0.25 ] 1,204 1,218 0,23 | 2,914 2,996
0,110,035 0,45 1,327 1,362 |1,90(1,99] 0,45 | 3,181 3,317 {1,89(1,99
0,085 0,46 | 1,377 1,427 0,18 | 3,258 3,435
0,095] 0,12 | 1,445 1.508 0,12 | 3,455 3,666
0,100 1.466 1,529 3,524 3,740
0,410 0,9593 | 0,9586 | 1,84 2,02 2,338 2,344 1,841 2,00
0,02 0,28 | 1,034 1,066 0,25 | 2.570 2,607
0,14 | 0,21 1,269 1,338 0,21 2,987 3,151
0,26 | 0,26 | 1,290 1,383 0,28 { 3,002 3,220
.38 | 0,47 | 1,412 1,515 0,47 | 3,332 3,588
0.40 1.486 1.589 3,580 3,841
0,81 0 0,7686 | 0,7580 |1,82] 2,01 1,886 1,865 1,81 12,00
0,04 | 0,25 | 0,9102 | 0,9204 0,22 | 2,235 2,263
0,23 10,25 1 1,141 1,220 0,26 1 2665 2,837
0,52 | 0,30 ] 1,153 1,245 0.31 | 2,675 2,876
0,76 | 0,23 | 1,301 1,399 0,25 | 3,044 3,279
0,80 1,439 1,537 3,501 3,746
1,01 0 0.6950 | 0,6827 1,709 1,685 |1,812,00
0,05 | 0,24 | 08507 | 08624 |1,82]2,01] 0,22 | 2,096 2,126
0,35 | 0,27 | 1,078 1,158 0,28 | 2,515 2,688
0651 0,31 1 1,00 1,175 0,32 | 2,529 2,709
0,95 | 0,25 | 4,245 1,334 0,29 | 2,904 3,417
1,00 1,413 1,504 3,455 3,683
30(0 0,3124 0,2988 {1,821,98 0,7776 0,7508 |[4,77]1,97
0,45 1 0,24 | 0,4886 | 0,5037 . 0,23 } 1,223 1,264
1,05 ] 0,32 { 0,6444 | 0,6723 ' 0,33 | 1,509 1,567
1,951 0,34 | 0,6724 0,6719 0,34 | 1,563 1,550
2,85 | 0,45 | 0,8429 0,8648 0,72 1 1,915 1,944
3.00 1,253 1,303 3,188 3,314
50| 0 0,1754 | 0,1649 | 1,81 1,97 04398 | 0,4157 (1,781,935
0,25 | 0,25 | 0,3208 | 0,3362 0,25 | 0,8084 i 0,8495
1,75 | 0,33 | 0,4276 0,4362 0,33 | 1,010 1,030
3,25 | 0,34 | 0,4671 | 0,4563 0,34 | 1,110 1,089
4,751 0,57 | 0,6443 | 0,6473 1,07 | 1,419 1,381
5,00 1,218 1,287 3,142 3,328

plates are maintained at constant temperatures equal to ®; and ®,, respectively. The heat transfer within the
layer takes place by radiation and by molecular heat conduction. The calculations are carried out for various
optical thicknesses and temperatures of the outer source, the other parameters having the following values:
®=0.7; ®,=1,0; £€=0.5; n=1; B=0; r=0; IW=aTgl/A=10 (Iyy is the Tvanov criterion; A is the coefficient of
thermal conductivity). The temperature distribution in the layer under stationary heat conditions was evalu-
ated on an electronic computer by using a program kindly put at our disposal by the authors of [11]. The fol-
lowing relations were used for the coefficients A, m;, m,:
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The integrals appearing in (4)-(6), namely,

VF @)Kyt —2fdt, | ©41) Ky (t)dt, f 0% (1) Ky (1, — 1) dt »
0 0 8

are improper integrals of the second kind and depend on a parameter. Their convergence can be proved by
using the Cauchy test.

To calculate the exact values of the dimensionless radiative fluxes the following relation was used:
T
g1 = 2(B1K,y(v) — BK, (1, — 1) — [ F () Kyt —t] o). M
[}

All the integrals appearing in the expressions (4)-(7) were evaluated by using the Gauss quadrature
formula. Equations (1)-(3) (for A=1/3, m; =m,=2) were solved by using finite-differences. Some results
are shown in Table 1 (the absolute values of the radiative fluxes are shown). :

Analyzing the obtained results, one finds that a modification of the layer optical thickness has only a
slight effect on the values of the coefficients m,, m,, and a stronger effect on the coefficient A, In the region
of low optical thickness the values of the coefficient A may vary by almost 300% from the averaged value;
however, the difference between the exact and the approximate solution is slight (never exceeding 9%). One
can explain this as follows. For =0 the second term in Eq. (1) is of the order 0(r3), and the third, 0(Ty).

For 7,<1 the second term is negligible, and an inexact value of the coefficient A does not result in a great
error in the magnitude of the radiative flux, The applicability of the differential approximation in the region
of low optical thickness was also noted in [7, 12, 13]. With the layer optical thickness increasing the value of
A comes close to 1/3, For 7> 1 the exact and approximate solutions are practically identical; the error in-
creases somewhat (up to 7%) only near the boundaries where the radiation anisotropy is more essential., In
the investigated range of optical thickness the temperature change of the outer sources has no noticeable effect
on the error. Calculation results show that the increase in the values of the coefficients A and m, in Egs.

(1)~ (3) results in higher absolute values of the radiative flux, and the increase in the coefficient m, lowers

the value of lq].

The obtained results demonstrate that the differential approximation remains valid for a wide range of
optical thicknesses and canbe applied successfully inthe calculations of radiative or complex heat exchange.
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CHANGE IN AMPLIFICATION FACTOR IN THE SHOCK
LAYER WHEN A SUPERSONIC FLOW WITH AN INVERTED
POPULATION FLOWS AROUND BLUNT BODIES

B. V., Egorov, V. N, Komarov, UDC 621.375.82
and G. N, Sayapin

INTRODUCTION

In modeling the supersonic flow of a relaxing gas around a solid body it is important to make a detailed
physicochemical analysis of the internal structure of the flow. The working gas used to simulate the real flow
often comprise's gas mixtures obtained by the combustion of hydrocarbon fuels and contains CO,, N,, O,, and
H,0 molecules. Of special interest in simulation problems is the circumfluence of a nonequilibrium flow with
an inverted population of the vibrational levels of the CO, molecules. A calculation of the amplification factor
for the (0001)—(1000) transition of the CO, molecule during the development of indirect jumps in compression
(shock waves) in an inverted medium was presented in [1]; there was a reduction in amplification factor for
the vibrational —rotational transition P(20) over the pressure range in which the greatest contribution to spec-
tral-line broadening was due to the collision mechanism. A fall or rise in amplification factor was observed
in [2], according to the intensity of the shock wave and the rotational quantum number.

In this paper we shall study the changes taking place in the amplification factor when blunt solids are
immersed in a gas flow (both in the subsonic and in the supersonic parts of the shock wave) as the angle of
inclination of the shock wave to the direction of the incident flow varies from 90° to the Mach angle; we shall
also study the influence of small perturbatlons traveling through the inverted medium on the amplification
factor.

§1. It is well known [3] that for the vibrational ~rotational transition (0001) — (1000) the amplification
factor of a weak signal may be written

= (A A /8 5NNy, — (8n/8m)N ] (a/A)H(a ,0), - (1.1

where A is the wavelength of the transition; Ay, is the Einstein coefficient for the spontaneous transition

n —m;j c is the velocity of light; the parameter ¢ = (AC/AD) m; Ac is the half-width of the line accounted
for by collisions; Ay is the Doppler half-width; Np» Nos 8ns gﬁl are the populations and statistical weights of
the upper and lower levels, respectively; and H(z, 0) is the Voigt function in the center of the line., The tem-
perature dependence of the shock half-width was taken as proportional to v/ 2,

Let us consider the axisymmetrical passage (around a cylinder with spherically blunted ends) of a non-
viscous supersonic homogeneous flow of relaxing gas mixture with an inverted population in the incident flow
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